By Topic

Blur identification by the method of generalized cross-validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Reeves, S.J. ; Dept. of Electr. Eng., Auburn Univ., AL, USA ; Mersereau, R.M.

The point spread function (PSF) of a blurred image is often unknown a priori; the blur must first be identified from the degraded image data before restoring the image. Generalized cross-validation (GCV) is introduced to address the blur identification problem. The GCV criterion identifies model parameters for the blur, the image, and the regularization parameter, providing all the information necessary to restore the image. Experiments are presented which show that GVC is capable of yielding good identification results. A comparison of the GCV criterion with maximum-likelihood (ML) estimation shows the GCV often outperforms ML in identifying the blur and image model parameters

Published in:

Image Processing, IEEE Transactions on  (Volume:1 ,  Issue: 3 )