By Topic

Segmentation of polarimetric synthetic aperture radar data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. Rignot ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; R. Chellappa

A statistical image model is proposed for segmenting polarimetric synthetic aperture radar (SAR) data into regions of homogeneous and similar polarimetric backscatter characteristics. A model for the conditional distribution of the polarimetric complex data is combined with a Markov random field representation for the distribution of the region labels to obtain the posterior distribution. Optimal region labeling of the data is then defined as maximizing the posterior distribution of the region labels given the polarimetric SAR complex data (maximum a posteriori (MAP) estimate). Two procedures for selecting the characteristics of the regions are then discussed. Results using real multilook polarimetric SAR complex data are given to illustrate the potential of the two selection procedures and evaluate the performance of the MAP segmentation technique. It is also shown that dual polarization SAR data can yield segmentation resultS similar to those obtained with fully polarimetric SAR data

Published in:

IEEE Transactions on Image Processing  (Volume:1 ,  Issue: 3 )