Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A highly latchup-immune 1-µm CMOS technology fabricated with 1-MeV ion implantation and self-aligned TiSi2

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Fang-Shi J.Lai ; IBM Thomas J. Watson Research Center, Yorktown Heights, NY ; Wang, L.K. ; Yuan Taur ; Sun, J.Y.-C.
more authors

A 1-µm n-well CMOS technology with high latchup immunity is designed, realized, and characterized. Important features in this technology include thin epi substrate, retrograde n-well formed by 1-MeV ion implantation, As-P graded junctions, and self-aligned titanium disilicide. The 1-µm CMOS technology has been characterized by examining the device I-V curves, avalanche-breakdown voltages, subthreshold characteristics, short-channel effect, and sheet resistances. The devices fabricated by using the 1-MeV ion implantation and self-aligned titanium disilicide do not deviate from the conventional devices constructed with the same level of technology. With the As-P double-diffused LDD structure for the n-channel device, the avalanche-breakdown voltage is increased and hot-electron reliability is greatly improved. The titanium disilicide process effectively reduces the sheet resistances of the source-drain and the polysilicon gate to 3 Ω/□ compared with 150 Ω/□ of the unsilicided counterparts. The optimized 1-µm device channel n-well CMOS resulted in a propagation delay time of 150 ps with a power dissipation of 0.3 mW. With the thin epi wafers and the retrograde n-well structure, latchup immunity is found to be greatly improved. Moreover, with the titanium disilicide formation on the source-drain, the latchup holding voltage is found to be extremely high (13 V) with the substrate grounded from the backside of the wafer. If the backside substrate is not grounded, self-aligned disilicide over n+and p+regions are found necessary to ensure high latchup immunity even in the case of thin epi on heavily doped substrate. The degradation of emitter efficiency due to the TiSi2is believed to be the dominant factor in raising the holding voltage. Detailed experimental results and discussions are presented.

Published in:

Electron Devices, IEEE Transactions on  (Volume:33 ,  Issue: 9 )