By Topic

Algorithmic transformations for neural computing and performance of supervised learning on a dataflow machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kim, S.T. ; Dept. of Electr. & Comput. Eng., Drexel Univ., Philadelphia, PA, USA ; Suwunboriruksa, K. ; Herath, S. ; Jayasumana, A.
more authors

Reprogrammable dataflow neural classifiers are proposed as an alternative to traditional implementations. In general, these classifiers are based on functional languages, neural-dataflow transformations, dataflow algorithmic transformations, and dataflow multiprocessors. An experimental approach is used to investigate the performance of a large-scale fine-grained dataflow classifier architecture. In this study, the functional descriptions of high level data dependency of a supervised learning algorithm are transformed into a machine executable low-level dataflow graph. The tagged token dataflow algorithmic transformation is applied to exploit the parallelism. Dataflow neural classifiers are used to implement the learning algorithm. No attempt is made to optimize the granularity of the high-level language programming blocks to balance the computation and communication. The proposed classifier architecture is more versatile than other existing architectures. Performance results show the effectiveness of dataflow neural classifiers

Published in:

Software Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 7 )