Cart (Loading....) | Create Account
Close category search window

Simulation of critical IC fabrication processes using advanced physical and numerical methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jungling, W. ; Institut für Allegemeine und Elektronik, Abteilung für Physikalische Elektronik, Wein, Austria ; Pichler, P. ; Selberherr, S. ; Guerrero, E.
more authors

Critical steps of IC fabrication are simulated by one- and two-dimensional computer programs using advanced physical models. Our codes deal with an arbitrary number of physical quantities such as concentrations of dopants, vacancies, interstitials and clusters, the electrostatic potential, and so on. Furthermore, they easily permit the exchange or variation of the physical models under consideration. As typical applications phenomena of coupled diffusion in one and two dimensions and dynamic arsenic clustering are investigated. The differences caused by the models of the zero space-charge approximation and the solution of the exact Poisson equation are studied by examples of As-B diffusion with various doping concentrations at different temperatures. A dynamic cluster model developed for the simulation of thermally annealed As implantations is compared to measured data of laser annealing experiments. A short outline of the mathematical and the numerical problems is given to show the amount of sophistication necessary for up-to-date process simulation.

Published in:

Electron Devices, IEEE Transactions on  (Volume:32 ,  Issue: 2 )

Date of Publication:

Feb 1985

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.