By Topic

A high aspect ratio design approach to millimeter-wave HEMT structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. B. Das ; Pennsylvania State University, University Park, PA

In MESFET and HEMT structures as the gate length is reduced below 0.5 µm in an attempt to achieve amplification at highest possible frequencies, it is essential that the depletion depth under the gate be also reduced in order to preserve a high aspect ratio that ensures a high device voltage gain factor (gm/g0) and a reasonable value of stable power gain at high frequencies. Results based on this design approach indicate that an n-A1GaAs/GaAs HEMT structure with 0.25-µm gate length could provide stable power gain in excess of 6 dB at the unity current gain frequency of 92.4 GHz, and for an aspect ratio of ten it is difficult to reduce the gate length below 0.25 µm.

Published in:

IEEE Transactions on Electron Devices  (Volume:32 ,  Issue: 1 )