By Topic

An evidential reasoning extension to quantitative model-based failure diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gertler, J.J. ; Dept. of Electr. Eng., George Mason Univ., Fairfax, VA, USA ; Anderson, K.C.

The detection and diagnosis of failures in physical systems characterized by continuous-time operation are studied. A quantitative diagnostic methodology has been developed that utilizes the mathematical model of the physical system. On the basis of the latter, diagnostic models are derived each of which comprises a set of orthogonal parity equations. To improve the robustness of the algorithm, several models may be used in parallel, providing potentially incomplete and/or conflicting inferences. Dempster's rule of combination is used to integrate evidence from the different models. The basic probability measures are assigned utilizing quantitative information extracted from the mathematical model and from online computation performed therewith

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:22 ,  Issue: 2 )