Cart (Loading....) | Create Account
Close category search window
 

New infrared detector on a silicon chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Luryi, S. ; AT&T Bell Laboratories, Murray Hill, NJ ; Kastalsky, A. ; Bean, John C.

We report a single-crystal Si-Ge structure which works as an efficient photodetector in the wavelength region of up to 1.5 µm. The multilevel structure is grown by molecular-beam epitaxy on an n-type 3-in silicon substrate and consists of the following layers: n+silicon (1000 Å), n+GexSi1 - xalloy (1800 Å, graded in ten steps fromx = 0tox = 1), n+germanium (1.25 µm), undoped germanium (2.0 µm), and p+germanium (2500 Å). Top three layers form a germanium p-i-n diode, which is removed from the Ge-Si interface by a buffer layer of high conductivity. An advantage of this structure is that its performance is insensitive to material defects in the buffer layers. Moreover, transmission electron microscopy shows that the density of dislocations introduced by lattice mismatch at the Ge-Si interface falls off with the separation from the interface. Our first experimental structures do exhibit the characteristics of a germanium p-i-n diode. The spectral response curves agree with those given in the literature for germanium, both at room and liquid nitrogen temperatures. For the incident light wavelength of 1.45 µm we have measured a quantum efficiency of 41 percent at T = 300 K. we believe that our approach opens an attractive possibility of fabricating complete infrared optoelectronic systems on a silicon chip.

Published in:

Electron Devices, IEEE Transactions on  (Volume:31 ,  Issue: 9 )

Date of Publication:

Sep 1984

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.