By Topic

Solar cell contact resistance—A review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schroder, D.K. ; Arizona State University, Tempe, AZ ; Meier, D.L.

An overview of ohmic contacts on solar cells is presented. The fundamentals of metal-semiconductor contacts are reviewed, including the Schottky approach, Fermi level pinning by surface states, and the mechanisms of thermionic emission, thermionic/field emission, and tunneling for current transport. The concept of contact resistance is developed and contact resistance data for several different contact materials on both silicon and gallium arsenide over a range of doping densities are summarized. Finally, the requirements imposed by solar cells on contact resistance are detailed.

Published in:

Electron Devices, IEEE Transactions on  (Volume:31 ,  Issue: 5 )