By Topic

Memoryless stabilization of uncertain linear systems including time-varying state delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Phoojaruenchanachai ; Dept. of Control Eng., Tokyo Inst. of Technol., Japan ; K. Furuta

The problem of stabilizing a class of uncertain time-delay systems via memoryless linear feedback is examined. The systems under consideration are linear systems with time-varying state delays. They also contain uncertain parameters (possibly time-varying) whose values are known only to within a prescribed compact bounding set. The main contribution given is to enlarge the class of time-delay systems for which one can construct a stabilizing memoryless linear feedback controller. Within this framework, a novel notion of robust memoryless stabilizability is first introduced via the method of Lyapunov functionals. Then a sufficient condition for the stabilizability is proposed. It is shown that solvability of a parameterized Riccati equation can be used to determine whether the time-delay system satisfies the sufficient condition. If there exists a positive definite symmetric solution satisfying the Riccati equation, a suitable memoryless linear feedback law can be derived

Published in:

IEEE Transactions on Automatic Control  (Volume:37 ,  Issue: 7 )