By Topic

Temperature sensitivity in silicon piezoresistive pressure transducers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sea-Chung Kim ; Bell Laboratories, Allentown, PA ; Wise, K.D.

The various mechanisms responsible for temperature sensitivity in silicon piezoresistive pressure sensors are described. As a representative transducer, a full-bridge device having a 1-mm-square 23-µm-thick diaphragm is used. The 200 Ω/square, 2K-Ω bridge resistors produce a pressure sensitivity of 13.3 µV/V.mmHg with a temperature coefficient of -1300 ppm/°C. Variability in this sensitivity is most strongly influenced by the diaphragm thickness and the absolute resistor tolerance. A new technique-the electrochemical EDP etch-stop-is found to offer significant advantages over alternative schemes for diaphragm formation. Temperature sensitivity in electrostatically-bonded, vacuum-sealed devices is dominated by resistor match, with oxide stress and junction leakage current playing relatively minor roles over the -40 to + 180°C temperature range. While individual pressure trims for offset and sensitivity will continue to be required, individual temperature trims may be eliminated in these devices for many applications as increasingly precise resistor processes are used.

Published in:

Electron Devices, IEEE Transactions on  (Volume:30 ,  Issue: 7 )