By Topic

Improving resolution in photolithography with a phase-shifting mask

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. D. Levenson ; IBM Research Laboratory, San Jose, CA ; N. S. Viswanathan ; R. A. Simpson

The phase-shifting mask consists of a normal transmission mask that has been coated with a transparent layer patterned to ensure that the optical phases of nearest apertures are opposite. Destructive interference between waves from adjacent apertures cancels some diffraction effects and increases the spatial resolution with which such patterns can be projected. A simple theory predicts a near doubling of resolution for illumination with partial incoherence σ < 0.3, and substantial improvements in resolution for σ < 0.7. Initial results obtained with a phase-shifting mask patterned with typical device structures by electron-beam lithography and exposed using a Mann 4800 10X tool reveals a 40-percent increase in usuable resolution with some structures printed at a resolution of 1000 lines/mm. Phase-shifting mask structures can be used to facilitate proximity printing with larger gaps between mask and wafer. Theory indicates that the increase in resolution is accompanied by a minimal decrease in depth of focus. Thus the phase-shifting mask may be the most desirable device for enhancing optical lithography resolution in the VLSI/VHSIC era.

Published in:

IEEE Transactions on Electron Devices  (Volume:29 ,  Issue: 12 )