By Topic

Efficiency calculations for thin-film polycrystalline semiconductor p-n junction solar cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lanza, C. ; IBM Thomas J. Watson Research Center, Yorktown Heights, NY ; Hovel, H.J.

Numerical calculations have been made of the effect of grain size on the short-circuit current and the AM1 efficiency of polycrystalline thin-film GaAs and InP (2 µm thick) and silicon (25 µm thick) p-n junction solar cells. Junction solar cells are seen to be more efficient than Schottky-barrier cells, due to the higher dark current associated with Schottky diodes. GaAs shows the highest efficiency and both GaAs and InP attain 90 percent of their maximum efficiencies at a grain size of 10 µm, while silicon requires grain sizes of 200 µm to attain 90 percent of maximum efficiency. However, the deleterious effect of poor lifetimes and mobilities is less for silicon polycrystalline cells than for the direct-bandgap devices.

Published in:

Electron Devices, IEEE Transactions on  (Volume:27 ,  Issue: 11 )