Cart (Loading....) | Create Account
Close category search window
 

Theory of a new three-terminal microwave power amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Se Puan Yu ; General Electric Research and Development Center, Schenectady, NY ; Tantraporn, W. ; Eshbach, J.R.

The feasibility of a new three-terminal linear power amplifier has been demonstrated both theoretically and experimentally from 0.5 to 3.0 GHz. The new amplifier is similar to an n-p-n bipolar transistor in configuration but develops extra power gain through avalanche multiplication and by the use of transit time in the collector. Major differences in the construction of the two devices are in their collector doping profiles and depletion layer widths. It is estimated that this new amplifier will be capable of several watts of power output at 10 GHz with useful gain, good linearity, and wide dynamic range. An acronym, CATT, which stands for controlled avalanche transit-time triode, is used to designate this new microwave semiconductor device. In this paper, the theory of the CATT is developed. It is found to be dc and RF stable. The necessary conditions on the ionization coefficients for signal amplification are investigated. The emitter-base dynamics of the CATT are shown to be quite different from a transistor due to hole feedback from the avalanche multiplication region. This phenomena results in a more uniform emitter current injection and better use of the emitter finger area than for transistors.

Published in:

Electron Devices, IEEE Transactions on  (Volume:23 ,  Issue: 3 )

Date of Publication:

Mar 1976

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.