By Topic

Beam-lead Schottky-barrier diodes for low-noise integrated microwave mixers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cerniglia, N.P. ; Sylvania Electric Products, Inc., Woburn, Mass. ; Tonner, R.C. ; Berkovits, G. ; Solomon, A.H.

This paper describes the fabrication and performance of beam lead n on n^{+} silicon-molybdenum, barrier dual Schottky diodes. The fabrication is by a process sequence which allows the use of a single molybdenum gold-metal deposition step for both the Schottky barrier and beam-lead interconnection system. Typical I-V and 1/C^{2}-V plots indicate uniformity of barrier heigh and n factor. Values of n less than 1.1 were measured with the barrier height at 0.61 eV. Measurements of change in barrier height with temperature up to 500°C show less than ± 10 mV variation. Dc characteristics of these devices give forward current matching of ± 10 mV at 1 mA. The Rsis 10 ohms and the Cjis less than 0.3 pF, giving an RC product less than 3 × 10-12seconds. Using these devices in a chrome-gold on alumina microstrip integrated mixer, overall single sideband noise figures of 6.5-7.0 dB were measured, with a 1.5 dB IF noise figure, at 9.4 GHz. Measured noise figure was essentially constant over a range of 1-10 mW of local oscillator power, and the diodes will with stand over 500 mW CW RF power. These values compare favorably with discrete packaged devices. Fabrication in series pairs, matched quads or other configurations can be accomplished with good uniformity.

Published in:

Electron Devices, IEEE Transactions on  (Volume:15 ,  Issue: 9 )