By Topic

Computationally efficient bounds for the performance of direct-sequence spread-spectrum multiple-access communications systems in jamming environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Nazari ; Digital Equipment Corp., Colorado Springs, CO, USA ; R. E. Ziemer

An approach for calculating upper and lower bounds for the probability of error for asynchronous multiple-access spread-spectrum communication systems using deterministic codes is presented. The techniques is then generalized to include multiple-tone jamming. The approach utilizes the cumulative distribution function of individual interference terms. The computational complexity of the technique is calculated to the polynomial-like. Results showing the multiple-access performance of gold codes of lengths 31 and 127 in the presence of jamming are shown. The fact that this computational technique gives upper and lower bounds is rigorously proved using the Riemann-Stieltjes integral

Published in:

IEEE Transactions on Communications  (Volume:36 ,  Issue: 5 )