By Topic

Spatial reasoning with incomplete information on relative positioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. M. R. Dehak ; EPITA-LRDE, France ; I. Bloch ; H. Maitre

This paper describes a probabilistic method of inferring the position of a point with respect to a reference point knowing their relative spatial position to a third point. We address this problem in the case of incomplete information where only the angular spatial relationships are known. The use of probabilistic representations allows us to model prior knowledge. We derive exact formulae expressing the conditional probability of the position given the two known angles, in typical cases: uniform or Gaussian random prior distributions within rectangular or circular regions. This result is illustrated with respect to two different simulations: the first is devoted to the localization of a mobile phone using only angular relationships, the second, to geopositioning within a city. This last example uses angular relationships and some additional knowledge about the position.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 9 )