By Topic

Recovering intrinsic images from a single image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. F. Tappen ; Comput. Sci. & Artificial Intelligence Lab., MIT, Cambridge, MA, USA ; W. T. Freeman ; E. H. Adelson

Interpreting real-world images requires the ability distinguish the different characteristics of the scene that lead to its final appearance. Two of the most important of these characteristics are the shading and reflectance of each point in the scene. We present an algorithm that uses multiple cues to recover shading and reflectance intrinsic images from a single image. Using both color information and a classifier trained to recognize gray-scale patterns, given the lighting direction, each image derivative is classified as being caused by shading or a change in the surface's reflectance. The classifiers gather local evidence about the surface's form and color, which is then propagated using the generalized belief propagation algorithm. The propagation step disambiguates areas of the image where the correct classification is not clear from local evidence. We use real-world images to demonstrate results and show how each component of the system affects the results.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 9 )