By Topic

The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Veenman, C.J. ; Dept. of Mediamatics, Delft Univ. of Technol., Netherlands ; Reinders, M.J.T.

We present the nearest subclass classifier (NSC), which is a classification algorithm that unifies the flexibility of the nearest neighbor classifier with the robustness of the nearest mean classifier. The algorithm is based on the maximum variance cluster algorithm and, as such, it belongs to the class of prototype-based classifiers. The variance constraint parameter of the cluster algorithm serves to regularize the classifier, that is, to prevent overfitting. With a low variance constraint value, the classifier turns into the nearest neighbor classifier and, with a high variance parameter, it becomes the nearest mean classifier with the respective properties. In other words, the number of prototypes ranges from the whole training set to only one per class. In the experiments, we compared the NSC with regard to its performance and data set compression ratio to several other prototype-based methods. On several data sets, the NSC performed similarly to the k-nearest neighbor classifier, which is a well-established classifier in many domains. Also concerning storage requirements and classification speed, the NSC has favorable properties, so it gives a good compromise between classification performance and efficiency.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 9 )