By Topic

A new image representation algorithm inspired by image submodality models, redundancy reduction, and learning in biological vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
N. Balakrishnan ; Dept. of Bioeng., Illinois Univ., Chicago, IL, USA ; K. Hariharakrishnan ; D. Schonfeld

We develop a new biologically motivated algorithm for representing natural images using successive projections into complementary subspaces. An image is first projected into an edge subspace spanned using an ICA basis adapted to natural images which captures the sharp features of an image like edges and curves. The residual image obtained after extraction of the sharp image features is approximated using a mixture of probabilistic principal component analyzers (MPPCA) model. The model is consistent with cellular, functional, information theoretic, and learning paradigms in visual pathway modeling. We demonstrate the efficiency of our model for representing different attributes of natural images like color and luminance. We compare the performance of our model in terms of quality of representation against commonly used basis, like the discrete cosine transform (DCT), independent component analysts (ICA), and principal components analysis (PCA), based on their entropies. Chrominance and luminance components of images are represented using codes having lower entropy than DCT, ICA, or PCA for similar visual quality. The model attains considerable simplification for learning from images by using a sparse independent code for representing edges and explicitly evaluating probabilities in the residual subspace.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 9 )