Cart (Loading....) | Create Account
Close category search window
 

Boolean operations with implicit and parametric representation of primitives using R-functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fougerolle, Y.D. ; Tennessee Univ., Knoxville, TN, USA ; Gribok, A. ; Foufou, S. ; Truchetet, F.
more authors

We present a new and efficient algorithm to accurately polygonize an implicit surface generated by multiple Boolean operations with globally deformed primitives. Our algorithm is special in the sense that it can be applied to objects with both an implicit and a parametric representation, such as superquadrics, supershapes, and Dupin cyclides. The input is a constructive solid geometry tree (CSG tree) that contains the Boolean operations, the parameters of the primitives, and the global deformations. At each node of the CSG tree, the implicit formulations of the subtrees are used to quickly determine the parts to be transmitted to the parent node, while the primitives' parametric definition are used to refine an intermediary mesh around the intersection curves. The output is both an implicit equation and a mesh representing its solution. For the resulting object, an implicit equation with guaranteed differential properties is obtained by simple combinations of the primitives' implicit equations using R-functions. Depending on the chosen R-function, this equation is continuous and can be differentiable everywhere. The primitives' parametric representations are used to directly polygonize the resulting surface by generating vertices that belong exactly to the zero-set of the resulting implicit equation. The proposed approach has many potential applications, ranging from mechanical engineering to shape recognition and data compression. Examples of complex objects are presented and commented on to show the potential of our approach for shape modeling.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:11 ,  Issue: 5 )

Date of Publication:

Sept.-Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.