By Topic

Application of arithmetic coding to compression of VLSI test data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Hashempour ; IC Dev. & Appl. Res., LTX Corp., San Jose, MA, USA ; F. Lombardi

This paper proposes arithmetic coding for application to data compression for VLSI testing. The use of arithmetic codes results in a codeword whose length is close to the optimal value (as predicted by entropy in information theory), thus achieving a higher compression. Previous techniques (such as those based on Huffman or Golomb coding) result in optimal codes for data sets in which the probability model of the symbols satisfies specific requirements. This paper shows empirically and analytically that Huffman and Golomb codes can result in a large difference between the bound established by the entropy and the attained compression; therefore, the worst-case difference is studied using information theory. Compression results for arithmetic coding are presented using ISCAS benchmark circuits; a practical integer implementation of arithmetic coding/decoding and an analysis of its deviation from the entropy bound are pursued. A software implementation is proposed using embedded DSP cores. In the experimental evaluation, fully specified test vectors and test cubes from two different ATPG programs are utilized. The implications of arithmetic coding on manufacturing test using an ATE are also investigated.

Published in:

IEEE Transactions on Computers  (Volume:54 ,  Issue: 9 )