By Topic

Multilayer traffic engineering for GMPLS-enabled networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Vigoureux, M. ; Alcatel Res. & Innovation, France ; Berde, B. ; Andersson, L. ; Cinkler, T.
more authors

In recent years, significant work has been completed on traffic engineering enhancements to the generalized multiprotocol label switching protocol suite (E. Mannie Oct 2004) (D. Katz et al., Sept. 2003) (K. Kompella et al., Oct 2003). As a next step, reproducing the current trend of switching layers' integration happening in the data plane, network control is foreseen to go beyond the traditional per layer approach and tend toward an integrated model (K. Shimoto et al., Oct 2004) (E. Dotaro et al., Dec. 2004). In these multilayer environments, a single GMPLS control plane drives various distinct switching layers at the same time and as a coherent whole, taking benefit from the "common" property of GMPLS. Beyond this application of supporting network control across different technologies, in this article we catalog the unified traffic engineering paradigms, discuss their applicability, and present their enforcement techniques. Furthermore, we show that the common GMPLS concept has the advantage of low operational complexity, and enables unified TE capabilities such as efficient network resource usage and rapid service provisioning.

Published in:

Communications Magazine, IEEE  (Volume:43 ,  Issue: 7 )