By Topic

Robust control design for a wheel loader using mixed sensitivity h-infinity and feedback linearization based methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fales, R. ; Dept. of Mech. & Aerosp. Eng., Missouri Univ., Columbia, MO, USA ; Kelkar, A.

The existing industry practices for the design of control systems in construction machines primarily rely on classical designs coupled with ad-hoc synthesis procedures. Such practices lack a systematic procedure to account for invariably present plant uncertainties in the design process as well as coupled dynamics of the multi-input multi-output (MIMO) configuration. In this paper, an H based robust control design combined with feedback linearization is presented for an automatic bucket leveling mechanism of a wheel loader. With the feedback linearization control law applied, stability robustness is improved. A MIMO nonlinear model for an electro-hydraulically actuated wheel loader is considered. The robustness of the controller designs are validated by using analysis and by simulation using a complete nonlinear model of the wheel loader system.

Published in:

American Control Conference, 2005. Proceedings of the 2005

Date of Conference:

8-10 June 2005