By Topic

Stochastic approximations of hybrid systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abate, A. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Ames, A.D. ; Sastry, S.S.

This paper introduces a method for approximating the dynamics of deterministic hybrid systems. Within this setting, we shall consider jump conditions that are characterized by spatial guards. After defining proper penalty functions along these deterministic guards, corresponding probabilistic intensities are introduced and the deterministic dynamics are approximated by the stochastic evolution of a continuous-time Markov process. We would illustrate how the definition of the stochastic barriers can avoid ill-posed events such as "grazing", and show how the probabilistic guards can be helpful in addressing the problem of event detection. Furthermore, this method represents a very general technique for handling Zeno phenomena; it provides a universal way to regularize a hybrid system. Simulations would show that the stochastic approximation of a hybrid system is accurate, while being able to handle ''pathological cases". Finally, further generalizations of this approach are motivated and discussed.

Published in:

American Control Conference, 2005. Proceedings of the 2005

Date of Conference:

8-10 June 2005