By Topic

Neural adaptive observer based fault detection and identification for satellite attitude control systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qing Wu ; Sch. of Eng. Sci., Simon Fraser Univ., Vancouver, BC, Canada ; M. Saif

A neural adaptive observer (NAO) based fault detection and identification (FDI) strategy for a class of nonlinear systems is presented in this paper. The observer input is designed in a structure similar to feedback neural networks. The parameters in the NAO input are updated by using the extended Kalman filter (EKF) algorithm. The convergence of the learning process is analyzed in terms of a quadratic Lyapunov function. Moreover, stability of the observer input and the NAO-based system are investigated respectively. Finally, the proposed FDI strategy is applied to a micro-satellite attitude control system. Several simulation results demonstrate that the NAO based FDI method can detect and specify both abrupt and incipient faults with satisfactory performance.

Published in:

Proceedings of the 2005, American Control Conference, 2005.

Date of Conference:

8-10 June 2005