By Topic

Hybrid-model based hierarchical mission control architecture for autonomous underwater vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tangirala, S. ; Appl. Res. Lab., Penn State Univ., USA ; Kumar, R. ; Bhattacharyya, S. ; O'Connor, M.
more authors

We present a hybrid, hierarchical architecture for mission control of autonomous underwater vehicles (AUVs). The architecture is model based and is designed with semiautomatic verification of safety and performance specifications as a primary capability in addition to the usual requirements such as real-time constraints, scheduling, shared-data integrity, etc. The architecture is realized using a commercially available graphical hybrid systems design and code generation tool. While the tool facilitates rapid redesign and deployment, it is crucial to include safety and performance verification into each step of the (re)design process. A formal model of the interacting hybrid automata in the design tool is outlined, and a tool is presented to automatically convert hybrid automata descriptions from the design tool into a format required by two hybrid verification tools. The application of this mission control architecture to a survey AUV is described and the procedures for verification outlined.

Published in:

American Control Conference, 2005. Proceedings of the 2005

Date of Conference:

8-10 June 2005