By Topic

Particle filters for tracking with out-of-sequence measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Orton, M. ; Dept. of Eng., Cambridge Univ., UK ; Marrs, A.

An extension is presented to the particle filtering toolbox that enables nonlinear/non-Gaussian filtering to be performed in the presence of out-of-sequence measurements (OOSMs) with arbitrary lag, without the need to adopt linearising approximations in the filter and without the degradation of performance that would occur if the OOSMs were simply discarded. An estimate of the performance of the OOSM particle filter (OOSM-PF) is obtained for bearings-only tracking scenarios with a single target and a small number of sensors. These performance estimates are then compared with the posterior Cramer-Rao lower bound (CRLB) for the state estimate rms error and similar performance estimates obtained from the oosm extended Kalman filter (OOSM-EKF) algorithms recently introduced in the literature. For a mildly nonlinear bearings-only tracking problem the OOSM-PF and OOSM-EKF are shown to achieve broadly similar performance.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:41 ,  Issue: 2 )