By Topic

RFNN control for PMLSM drive via backstepping technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Nat. Dong Hwa Univ., Hualien, Taiwan ; Po-Hung Shen ; Rong-Fong Fung

A robust fuzzy neural network (RFNN) control system is proposed in this study to control the position of the mover of a permanent magnet linear synchronous motor (PMLSM) drive system to track periodic reference trajectories. First, an ideal feedback linearization control law is designed based on the backstepping technique. Then, a fuzzy neural network (FNN) controller is designed to be the main tracking controller of the proposed RFNN control system to mimic an ideal feedback linearization control law, and a robust controller is proposed to confront the shortcoming of the FNN controller. Moreover, to relax the requirement for the bound of uncertainty term, which comprises a minimum approximation error, optimal parameter vectors and higher order terms in Taylor series, an adaptive bound estimation is investigated where a simple adaptive algorithm is utilized to estimate the bound of uncertainty. Furthermore, the simulated and experimental results due to periodic reference trajectories demonstrate that the dynamic behaviors of the proposed control systems are robust with regard to uncertainties.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:41 ,  Issue: 2 )