By Topic

Online fuel tracking by combining principal component analysis and neural network techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lijun Xu ; Dept. of Electron., Univ. of Kent, Canterbury, UK ; Yong Yan ; S. Cornwell ; G. Riley

This paper presents a novel approach to the online tracking of pulverized fuel during combustion. A specially designed flame detector containing three photodiodes is used to derive multiple signals covering a wide spectrum of flame radiation from the infrared to ultraviolet regions through the visible band. Various flame features are extracted from the time and frequency domains. A back-propagation neural network is deployed to map the flame features to an individual type of fuel. The neural network has incorporated principal component analysis to reduce the complexity of the network and hence its training time. Experimental tests were conducted on a 0.5 MWth combustion test facility using eight different types of coal. Results obtained demonstrate that the approach is effective for the online identification of the type of fuel being fired under steady combustion conditions, and the average success rate is 93.4%.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:54 ,  Issue: 4 )