By Topic

Bi-iterative least-square method for subspace tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shan Ouyang ; Dept. of Commun. & Inf. Eng., Guilin Univ. of Electron. Technol., China ; Hua, Y.

Subspace tracking is an adaptive signal processing technique useful for a variety of applications. In this paper, we introduce a simple bi-iterative least-square (Bi-LS) method, which is in contrast to the bi-iterative singular value decomposition (Bi-SVD) method. We show that for subspace tracking, the Bi-LS method is easier to simplify than the Bi-SVD method. The linear complexity algorithms based on Bi-LS are computationally more efficient than the existing linear complexity algorithms based on Bi-SVD, although both have the same performance for subspace tracking. A number of other existing subspace tracking algorithms of similar complexity are also compared with the Bi-LS algorithms.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 8 )