By Topic

Blind identification of Volterra-Hammerstein systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kalouptsidis, N. ; Dept. of Informatics & Telecommun., Univ. of Athens, Greece ; Koukoulas, P.

This paper is concerned with the blind identification of Volterra-Hammerstein systems. Two identification scenarios are covered. The first scenario assumes that, although the input is not available, the statistics of the input are a priori known. This case appears in communication applications where the input statistics of the transmitter are known to the receiver. The second scenario assumes that the input statistics are unknown. In the case of known input statistics, the input is stationary higher order white noise with arbitrary probability density function. Under the scenario of unknown input statistics, the input is restricted to Gaussian white process. New cumulant-based identification methods are described for the above scenarios. The problem is converted into a linear multivariable form and the output cumulants are calculated using Kronecker products. First, initial conditions are determined by a linear system of equations. These correspond to the boundary values of the Volterra kernels. The remaining kernel coefficients can be determined under both identification schemes from a possibly overdetermined system of linear equations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 8 )