By Topic

Capon algorithm mean-squared error threshold SNR prediction and probability of resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Richmond, C.D. ; Lincoln Lab., Massachusetts Inst. of Technol., Lexington, MA, USA

Below a specific threshold signal-to-noise ratio (SNR), the mean-squared error (MSE) performance of signal parameter estimates derived from the Capon algorithm degrades swiftly. Prediction of this threshold SNR point is of practical significance for robust system design and analysis. The exact pairwise error probabilities for the Capon (and Bartlett) algorithm, derived herein, are given by simple finite sums involving no numerical integration, include finite sample effects, and hold for an arbitrary colored data covariance. Via an adaptation of an interval error based method, these error probabilities, along with the local error MSE predictions of Vaidyanathan and Buckley, facilitate accurate prediction of the Capon threshold region MSE performance for an arbitrary number of well separated sources, circumventing the need for numerous Monte Carlo simulations. A large sample closed-form approximation for the Capon threshold SNR is provided for uniform linear arrays. A new, exact, two-point measure of the probability of resolution for the Capon algorithm, that includes the deleterious effects of signal model mismatch, is a serendipitous byproduct of this analysis that predicts the SNRs required for closely spaced sources to be mutually resolvable by the Capon algorithm. Last, a general strategy is provided for obtaining accurate MSE predictions that account for signal model mismatch.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 8 )