Cart (Loading....) | Create Account
Close category search window
 

Physics-based compact model of nanoscale MOSFETs-Part I: transition from drift-diffusion to ballistic transport

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mugnaini, G. ; Dipt. di Ingegneria dell''Informazione, Univ. di Pisa, Italy ; Iannaccone, G.

In this paper, we present a physics-based analytical model for nanoscale MOSFETs that allows us to seamlessly cover the whole range of regimes from drift-diffusion (DD) to ballistic (B) transport, taking into account quantum confinement in the channel. In Part I we focus on MOSFETs with ultrathin bodies, in which quantum confinement is structural rather than field-induced, and investigate in detail an analytical description of the transition from drift-diffusion to B transport based on the Büttiker approach to dissipative transport. We first start from the derivation of a closed form analytical expression of the Natori model for B MOSFETs, and show that a MOSFET with finite scattering length can be described as a suitable chain of B MOSFETs. Then, we are able to compact the behavior of the B chain in a simple analytical model. In the derivation, we also find a similarity between the B limit in the chain and the saturation velocity effect, that leads us to propose an alternative implementation of the saturation velocity effect in compact models.

Published in:

Electron Devices, IEEE Transactions on  (Volume:52 ,  Issue: 8 )

Date of Publication:

Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.