By Topic

Physics-based compact model of nanoscale MOSFETs-Part I: transition from drift-diffusion to ballistic transport

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Mugnaini ; Dipt. di Ingegneria dell'Informazione, Univ. di Pisa, Italy ; G. Iannaccone

In this paper, we present a physics-based analytical model for nanoscale MOSFETs that allows us to seamlessly cover the whole range of regimes from drift-diffusion (DD) to ballistic (B) transport, taking into account quantum confinement in the channel. In Part I we focus on MOSFETs with ultrathin bodies, in which quantum confinement is structural rather than field-induced, and investigate in detail an analytical description of the transition from drift-diffusion to B transport based on the Büttiker approach to dissipative transport. We first start from the derivation of a closed form analytical expression of the Natori model for B MOSFETs, and show that a MOSFET with finite scattering length can be described as a suitable chain of B MOSFETs. Then, we are able to compact the behavior of the B chain in a simple analytical model. In the derivation, we also find a similarity between the B limit in the chain and the saturation velocity effect, that leads us to propose an alternative implementation of the saturation velocity effect in compact models.

Published in:

IEEE Transactions on Electron Devices  (Volume:52 ,  Issue: 8 )