By Topic

Control of threshold-voltage and short-channel effects in ultrathin strained-SOI CMOS devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Numata, T. ; MIRAI-Assoc. of Super-Adv. Electron. Technol., Kawasaki, Japan ; Mizuno, Tomohisa ; Tezuka, T. ; Koga, J.
more authors

This paper presents a quantitative study on the device design for the control of threshold-voltage and the suppression of short-channel effects (SCEs) in ultrathin strained-silicon-on-insulator (strained-SOI) CMOSFETs in the sub-100-nm regime. A two-dimensional device simulation is used for this purpose, with emphasis on the impact of band offset in Si/SiGe heterostructures. For the control of threshold-voltage, the combination of the gate work function and the back gate bias is needed to obtain appropriate values of threshold-voltage in n- and p-channel MOSFETs and to suppress SiGe buried channels in p-channel MOSFETs with thicker strained-Si layers. Regarding SCEs, the importance and the necessity of thin SiGe layers are pointed out from the viewpoint of the influence of the higher permittivity of SiGe layers. It is shown that the SCEs of strained-SOI MOSFETs with thinner SiGe layers are almost the same level as those of unstrained-SOI.

Published in:

Electron Devices, IEEE Transactions on  (Volume:52 ,  Issue: 8 )