By Topic

On the capacity of network coding for random networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Ramamoorthy ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA, USA ; Jun Shi ; R. D. Wesel

We study the maximum flow possible between a single-source and multiple terminals in a weighted random graph (modeling a wired network) and a weighted random geometric graph (modeling an ad-hoc wireless network) using network coding. For the weighted random graph model, we show that the network coding capacity concentrates around the expected number of nearest neighbors of the source and the terminals. Specifically, for a network with a single source, l terminals, and n relay nodes such that the link capacities between any two nodes is independent and identically distributed (i.i.d.) ∼X, the maximum flow between the source and the terminals is approximately nE[X] with high probability. For the weighted random geometric graph model where two nodes are connected if they are within a certain distance of each other we show that with high probability the network coding capacity is greater than or equal to the expected number of nearest neighbors of the node with the least coverage area.

Published in:

IEEE Transactions on Information Theory  (Volume:51 ,  Issue: 8 )