Cart (Loading....) | Create Account
Close category search window
 

On the capacity of network coding for random networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramamoorthy, A. ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA, USA ; Jun Shi ; Wesel, R.D.

We study the maximum flow possible between a single-source and multiple terminals in a weighted random graph (modeling a wired network) and a weighted random geometric graph (modeling an ad-hoc wireless network) using network coding. For the weighted random graph model, we show that the network coding capacity concentrates around the expected number of nearest neighbors of the source and the terminals. Specifically, for a network with a single source, l terminals, and n relay nodes such that the link capacities between any two nodes is independent and identically distributed (i.i.d.) ∼X, the maximum flow between the source and the terminals is approximately nE[X] with high probability. For the weighted random geometric graph model where two nodes are connected if they are within a certain distance of each other we show that with high probability the network coding capacity is greater than or equal to the expected number of nearest neighbors of the node with the least coverage area.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 8 )

Date of Publication:

Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.