By Topic

New code upper bounds from the Terwilliger algebra and semidefinite programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schrijver, A. ; Univ. of Amsterdam

We give a new upper bound on the maximum size A(n,d) of a binary code of word length n and minimum distance at least d. It is based on block-diagonalizing the Terwilliger algebra of the Hamming cube. The bound strengthens the Delsarte bound, and can be calculated with semidefinite programming in time bounded by a polynomial in n. We show that it improves a number of known upper bounds for concrete values of n and d. From this we also derive a new upper bound on the maximum size A(n,d,w) of a binary code of word length n, minimum distance at least d, and constant weight w, again strengthening the Delsarte bound and yielding several improved upper bounds for concrete values of n, d, and w

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 8 )