By Topic

Practical adaptive neural control of nonlinear systems with unknown time delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fan Hong ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; S. S. Ge ; Tong Heng Lee

Practical adaptive neural control is presented for a class of nonlinear systems with unknown time delays in strict-feedback form. Using appropriate Lyapunov-Krasovskii functionals, the unknown time delays are compensated for. Controller singularity problems are solved by practical neural network control. A novel differentiable control function is provided such that the practical design can be carried out in the decoupled backstepping design. It is proved that the proposed design method is able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed-loop system, and the tracking error is proven to converge to a small neighborhood of the origin.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:35 ,  Issue: 4 )