Cart (Loading....) | Create Account
Close category search window
 

Modeling and controlling a robotic convoy using guidance laws strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Belkhouche, F. ; Electr. Eng. & Comput. Sci. Dept., Tulane Univ., New Orleans, LA, USA ; Belkhouche, B.

This paper deals with the problem of modeling and controlling a robotic convoy. Guidance laws techniques are used to provide a mathematical formulation of the problem. The guidance laws used for this purpose are the velocity pursuit, the deviated pursuit, and the proportional navigation. The velocity pursuit equations model the robot's path under various sensors based control laws. A systematic study of the tracking problem based on this technique is undertaken. These guidance laws are applied to derive decentralized control laws for the angular and linear velocities. For the angular velocity, the control law is directly derived from the guidance laws after considering the relative kinematics equations between successive robots. The second control law maintains the distance between successive robots constant by controlling the linear velocity. This control law is derived by considering the kinematics equations between successive robots under the considered guidance law. Properties of the method are discussed and proven. Simulation results confirm the validity of our approach, as well as the validity of the properties of the method.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:35 ,  Issue: 4 )

Date of Publication:

Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.