By Topic

Qualitative map learning based on covisibility of objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. Yairi ; Res. Center For Adv. Sci. & Technol., Univ. of Tokyo, Japan ; K. Hori ; K. Hirama

Autonomous map construction is one of the most fundamental and significant issues in intelligent mobile robot research. While a variety of map construction methods have been proposed, most require some quantitative measurements of the environment and a mechanism of precise self-localization. This paper proposes a novel map construction method using only qualitative information about "how often two objects are observed simultaneously." This method is based on heuristics-"closely located objects are likely to be seen simultaneously more often than distant objects" and a well-known multivariate data analysis technique-multidimensional scaling. A significant feature of this method is that it requires neither quantitative sensor measurements nor information about the robot's own position. Simulation and experimental results demonstrated that this method is sufficiently practical for capturing a qualitative spatial relationship among identifiable landmark objects rapidly.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:35 ,  Issue: 4 )