By Topic

A TSK-type neurofuzzy network approach to system modeling problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen-Sen Ouyang ; Dept. of Inf. Eng., I-Shou Univ., Taiwan ; Wan-Jui Lee ; Shie-Jue Lee

We develop a neurofuzzy network technique to extract TSK-type fuzzy rules from a given set of input-output data for system modeling problems. Fuzzy clusters are generated incrementally from the training dataset, and similar clusters are merged dynamically together through input-similarity, output-similarity, and output-variance tests. The associated membership functions are defined with statistical means and deviations. Each cluster corresponds to a fuzzy IF-THEN rule, and the obtained rules can be further refined by a fuzzy neural network with a hybrid learning algorithm which combines a recursive singular value decomposition-based least squares estimator and the gradient descent method. The proposed technique has several advantages. The information about input and output data subspaces is considered simultaneously for cluster generation and merging. Membership functions match closely with and describe properly the real distribution of the training data points. Redundant clusters are combined, and the sensitivity to the input order of training data is reduced. Besides, generation of the whole set of clusters from the scratch can be avoided when new training data are considered.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:35 ,  Issue: 4 )