Cart (Loading....) | Create Account
Close category search window
 

A joint compression-discrimination neural transformation applied to target detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chan, A.L. ; U.S. Army Res. Lab., Adelphi, MD, USA ; Der, S.Z. ; Nasrabadi, N.M.

Many image recognition algorithms based on data-learning perform dimensionality reduction before the actual learning and classification because the high dimensionality of raw imagery would require enormous training sets to achieve satisfactory performance. A potential problem with this approach is that most dimensionality reduction techniques, such as principal component analysis (PCA), seek to maximize the representation of data variation into a small number of PCA components, without considering interclass discriminability. This paper presents a neural-network-based transformation that simultaneously seeks to provide dimensionality reduction and a high degree of discriminability by combining together the learning mechanism of a neural-network-based PCA and a backpropagation learning algorithm. The joint discrimination-compression algorithm is applied to infrared imagery to detect military vehicles.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:35 ,  Issue: 4 )

Date of Publication:

Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.