By Topic

Nonmetric calibration of camera lens distortion: differential methods and robust estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ahmed, M. ; Electr. Eng. Dept., Assiut Univ., Egypt ; Farag, A.

This paper addresses the problem of calibrating camera lens distortion, which can be significant in medium to wide angle lenses. Our approach is based on the analysis of distorted images of straight lines. We derive new distortion measures that can be optimized using nonlinear search techniques to find the best distortion parameters that straighten these lines. Unlike the other existing approaches, we also provide fast, closed-form solutions to the distortion coefficients. We prove that including both the distortion center and the decentering coefficients in the nonlinear optimization step may lead to instability of the estimation algorithm. Our approach provides a way to get around this, and, at the same time, it reduces the search space of the calibration problem without sacrificing the accuracy and produces more stable and noise-robust results. In addition, while almost all existing nonmetric distortion calibration methods needs user involvement in one form or another, we present a robust approach to distortion calibration based on the least-median-of-squares estimator. Our approach is, thus, able to proceed in a fully automatic manner while being less sensitive to erroneous input data such as image curves that are mistakenly considered projections of three-dimensional linear segments. Experiments to evaluate the performance of this approach on synthetic and real data are reported.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 8 )