Cart (Loading....) | Create Account
Close category search window
 

Parametric reconstruction of generalized cylinders from limb edges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chunhong Pan ; Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China ; Hongping Yan ; Medioni, G. ; Songde Ma

The three-dimensional (3-D) reconstruction of generalized cylinders (GCs) is an important research field in computer vision. One of the main difficulties is that some contour features in images cannot be reconstructed by traditional stereovision because they do not correspond to reflectance discontinuities of surface in space. In this paper, we present a novel, parametric approach for the 3-D reconstruction of circular generalized cylinders (CGCs) only from the limb edges of CGCs in two images. Instead of exploiting the invariant and quasiinvariant properties of some specific subclasses of GCs in projections, our reconstruction is achieved by some general assumptions on GCs, and can, therefore, be applied to a broader subclass of GCs. In order to improve robustness, we perform the extraction and labeling of the limb edge interactively, and estimate the epipolar geometry between two images by an optimal algorithm. Then, for different types of GCs, three kinds of symmetries (parallel symmetry, skew symmetry, and local smooth symmetry) are employed to compute the symmetry of limb edges. The surface points corresponding to limb edges in images are reconstructed by integrating the recovered epipolar geometry and the properties induced from the assumptions that we make on the GCs. Finally, a homography-based method is exploited to further refine the 3-D description of the GC with a coplanar curved axis.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 8 )

Date of Publication:

Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.