By Topic

CLUE: cluster-based retrieval of images by unsupervised learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yixin Chen ; Dept. of Comput. Sci., Univ. of New Orleans, LA, USA ; J. Z. Wang ; R. Krovetz

In a typical content-based image retrieval (CBIR) system, target images (images in the database) are sorted by feature similarities with respect to the query. Similarities among target images are usually ignored. This paper introduces a new technique, cluster-based retrieval of images by unsupervised learning (CLUE), for improving user interaction with image retrieval systems by fully exploiting the similarity information. CLUE retrieves image clusters by applying a graph-theoretic clustering algorithm to a collection of images in the vicinity of the query. Clustering in CLUE is dynamic. In particular, clusters formed depend on which images are retrieved in response to the query. CLUE can be combined with any real-valued symmetric similarity measure (metric or nonmetric). Thus, it may be embedded in many current CBIR systems, including relevance feedback systems. The performance of an experimental image retrieval system using CLUE is evaluated on a database of around 60,000 images from COREL. Empirical results demonstrate improved performance compared with a CBIR system using the same image similarity measure. In addition, results on images returned by Google's Image Search reveal the potential of applying CLUE to real-world image data and integrating CLUE as a part of the interface for keyword-based image retrieval systems.

Published in:

IEEE Transactions on Image Processing  (Volume:14 ,  Issue: 8 )