By Topic

Figure-ground segmentation from occlusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. M. Q. Aguiar ; Inst. for Syst. & Robotics, Inst. Superior Tecnico, Lisbon, Portugal ; J. M. F. Moura

Layered video representations are increasingly popular; see for a recent review. Segmentation of moving objects is a key step for automating such representations. Current motion segmentation methods either fail to segment moving objects in low-textured regions or are computationally very expensive. This paper presents a computationally simple algorithm that segments moving objects, even in low-texture/low-contrast scenes. Our method infers the moving object templates directly from the image intensity values, rather than computing the motion field as an intermediate step. Our model takes into account the rigidity of the moving object and the occlusion of the background by the moving object. We formulate the segmentation problem as the minimization of a penalized likelihood cost function and present an algorithm to estimate all the unknown parameters: the motions, the template of the moving object, and the intensity levels of the object and of the background pixels. The cost function combines a maximum likelihood estimation term with a term that penalizes large templates. The minimization algorithm performs two alternate steps for which we derive closed-form solutions. Relaxation improves the convergence even when low texture makes it very challenging to segment the moving object from the background. Experiments demonstrate the good performance of our method.

Published in:

IEEE Transactions on Image Processing  (Volume:14 ,  Issue: 8 )