Cart (Loading....) | Create Account
Close category search window

A stochastic method for Bayesian estimation of hidden Markov random field models with application to a color model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Destrempes, F. ; Dept. d''Informatique et de Recherche Operationnelle, Univ. de Montreal, Que., Canada ; Mignotte, M. ; Angers, J.-F.

We propose a new stochastic algorithm for computing useful Bayesian estimators of hidden Markov random field (HMRF) models that we call exploration/selection/estimation (ESE) procedure. The algorithm is based on an optimization algorithm of O. Francois, called the exploration/selection (E/S) algorithm. The novelty consists of using the a posteriori distribution of the HMRF, as exploration distribution in the E/S algorithm. The ESE procedure computes the estimation of the likelihood parameters and the optimal number of region classes, according to global constraints, as well as the segmentation of the image. In our formulation, the total number of region classes is fixed, but classes are allowed or disallowed dynamically. This framework replaces the mechanism of the split-and-merge of regions that can be used in the context of image segmentation. The procedure is applied to the estimation of a HMRF color model for images, whose likelihood is based on multivariate distributions, with each component following a Beta distribution. Meanwhile, a method for computing the maximum likelihood estimators of Beta distributions is presented. Experimental results performed on 100 natural images are reported. We also include a proof of convergence of the E/S algorithm in the case of nonsymmetric exploration graphs.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 8 )

Date of Publication:

Aug. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.