By Topic

Statistical bias in 3-D reconstruction from a monocular video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. K. Roy-Chowdhury ; Dept. of Electr. Eng., Univ. of California, Riverside, CA, USA ; R. Chellappa

The present state-of-the-art in computing the error statistics in three-dimensional (3-D) reconstruction from video concentrates on estimating the error covariance. A different source of error which has not received much attention is the fact that the reconstruction estimates are often significantly statistically biased. In this paper, we derive a precise expression for the bias in the depth estimate, based on the continuous (differentiable) version of structure from motion (SfM). Many SfM algorithms, or certain portions of them, can be posed in a linear least-squares (LS) framework Ax=b. Examples include initialization procedures for bundle adjustment or algorithms that alternately estimate depth and camera motion. It is a well-known fact that the LS estimate is biased if the system matrix A is noisy. In SfM, the matrix A contains point correspondences, which are always difficult to obtain precisely; thus, it is expected that the structure and motion estimates in such a formulation of the problem would be biased. Existing results on the minimum achievable variance of the SfM estimator are extended by deriving a generalized Cramer-Rao lower bound. A detailed analysis of the effect of various camera motion parameters on the bias is presented. We conclude by presenting the effect of bias compensation on reconstructing 3-D face models from rendered images.

Published in:

IEEE Transactions on Image Processing  (Volume:14 ,  Issue: 8 )