Cart (Loading....) | Create Account
Close category search window
 

Optimal erasure protection for scalably compressed video streams with limited retransmission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Taubman, D. ; Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, Sydney, NSW, Australia ; Thie, J.

This paper shows how the priority encoding transmission (PET) framework may be leveraged to exploit both unequal error protection and limited retransmission for RD-optimized delivery of streaming media. Previous work on scalable media protection with PET has largely ignored the possibility of retransmission. Conversely, the PET framework has not been harnessed by the substantial body of previous work on RD optimized hybrid forward error correction/automatic repeat request schemes. We limit our attention to sources which can be modeled as independently compressed frames (e.g., video frames), where each element in the scalable representation of each frame can be transmitted in one or both of two transmission slots. An optimization algorithm determines the level of protection which should be assigned to each element in each slot, subject to transmission bandwidth constraints. To balance the protection assigned to elements which are being transmitted for the first time with those which are being retransmitted, the proposed algorithm formulates a collection of hypotheses concerning its own behavior in future transmission slots. We show how the PET framework allows for a decoupled optimization algorithm with only modest complexity. Experimental results obtained with Motion JPEG2000 compressed video demonstrate that substantial performance benefits can be obtained using the proposed framework.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 8 )

Date of Publication:

Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.